RDCH 702: Lecture 5 Nuclear Force, Structure and Models

- Readings:
 - Nuclear and Radiochemistry: Chapter 10 (Nuclear Models)
 - Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure)
- Characterization of strong force
- Charge Independence
 - Introduce isospin
- Nuclear Potentials
- Simple Shell Model (Focus of lecture)

Nuclear Force

- For structure, reactions and decay of nuclei
 - electromagnetic, strong and weak interactions are utilized
- Fundamental forces exhibit exchange character
 - operate through virtual exchange of particles that act as force carriers

Strong Force

- Nuclear force has short range
 - Range of a nucleon
- Nuclear force is strongly attractive and forms a dense nucleus
- Nuclear force has a repulsive core
 - Below a distance (0.5 fm) nuclear force becomes repulsive
- Force between two nucleons has two components
 - spherically symmetric central force
 - asymmetric tensor force
 - → Spin dependent force between nucleons
- Consider ²H
 - Proton and neutron
 - \rightarrow Parallel spin ³S
 - * Can be in excited state, ³D
 - * Antiparellel is unbound ¹S

Charge Independent Force

- Strong force not effected by charge
 - np, nn, pp interactions the same
 - → Electromagnetic force for charge
- Strong force examined by
 - Nucleon-nucleon scattering
 - Mirror nucles
 - → Isobars with number of p in one nuclei equals number of n in other
 - → Similar energy for net nuclear binding energy
 - * Normalize influence of 7 Coulomb Energy
- Shows proton and neutron two states of same particle

Α	Nucleus	Total Binding Energy (MeV)	Coulomb Energy (MeV)	Net nuclear binding energy (MeV)
3	³ H	-8.486	0	-8.486
	³ He	-7.723	0.829	-8.552
13	¹³ C	-97.10	7.631	-104.734
	¹³ N	-94.10	10.683	-104.770
23	²³ Na	-186.54	23.13	-209.67
\checkmark	²³ Ne	-181.67	27.75	-209.42
41	⁴¹ Ca	-350.53	65.91	-416.44
	⁴¹ Sc	\$43.79	72.84	-416.63

- Isospin is conserved in processes involving the strong interaction
- Isospin forms basis for selection rules for nuclear reactions and nuclear decay processes
- Property of nucleon
 - Analogy to angular momentum
 - T=1/2 for a nucleon
 - → +1/2 for proton, -1/2 for neutron

Nuclear Potential Characteristics

- Particles in a potential well
 - Nuclear forces describe potential
 - Small well
 - Well stabilizes nucleons
 - \rightarrow Free neutrons decay
 - * Neutrons can be stable in nuclear well
 - \rightarrow Mixture of nucleons stable
 - * 2 protons (²He) unstable
 - * 2 neutrons unstable
 - \rightarrow A=3
 - * Mixture of n and p stable
 - > 3 protons unstable
- Nuclear force acts between nucleons in uniform way
 - Protons have additional Columbic repulsion that destabilize proton-rich nuclei
 - \rightarrow Very neutron-rich nuclei are also unstable
 - Light, symmetric nuclei (Z=N) are favored
 - Nuclear force depends on the spin alignment of nucleons
- Potential energy of two nucleons shows similarity to chemical bond potential-energy function

- Interactions among nucleons in nucleus replaced by potential-energy well within which each particle moves freely
- Properties determined by shape of potential energy well
- Experimental Evidence to support model
 - ground-state spin of 0 for all nuclei with even neutron and proton number
 - Magic number for nuclei
 - Systematics of ground-state spins for odd-mass-number nuclei
 - Dependence of magnetic moments of nuclei upon their spins
 - Properties of ground states of oddmass-number nuclei approximately from odd, unpaired nucleon
 - →All other nucleons provide potential-energy field
 - →determines single-particle quantum states for unpair nucleon
 - Stability of nuclei based on number of neutrons and protons

Shell Model

Shell Model

- Model nucleus as a spherical rigid container
 - square-well potential
 - → potential energy assumed to be zero when particle is inside walls
 - → Particle does not escape
- **Harmonic oscillator potential**
 - parabolic shape
 - steep sides that continue upwards
 - → useful only for the low-lying energy levels
 - \rightarrow equally spaced energy levels
 - * Potential does not "saturate"
 - * not suitable for large nuclei
- Change from harmonic oscillator to square well lowers potential energy near edge of nucleus
 - Enhances stability of states near edge of nucleus
 - States with largest angular momentum most stabilized

Shell Model

Shell filling

- States defined by n and l
 - \rightarrow 1s, 1p, 1d, ...
 - * Compare with electrons
- States with same 2n+l degenerate with same parity (compose level)
 - $\begin{array}{r} \Rightarrow 2s = 2*2+0=4 \\ \Rightarrow 1d = 2*1+2=4 \end{array}$
 - \rightarrow 1g=2*1+4=6 \rightarrow 2d=2*2+2=6
 - $\rightarrow 2u=2*2+2=0$ $\rightarrow 3s=2*3+0=6$
- Spin-Orbit Interaction
 - Addition of spin orbit term causes energy level separation according to total angular momentum (j=l+s)
 - \rightarrow For p, l=1
 - * s=±1/2
 - * j=1+1/2=3/2 and 1-1/2=1/2
 - * split into fourfold degenerate 1p_{3/2} and twofold degenerate 1p_{1/2} states
 - \rightarrow For g, l=4, j=7/2 and 9/2
 - states with parallel coupling and larger total angular momentum values are favored
 - closed shells 28, 50, 82, and 126
 - \rightarrow splitting of the 1f, 1g, 1h, and 1i
- Each principal quantum number level is a shell of orbitals
- Energy gap between shell the same

Filling Shells

- Odd-A Nuclei
 - In odd A nucleus of all but one of nucleons considered to have their angular momenta paired off
 - \rightarrow forming even-even core
 - \rightarrow single odd nucleon moves essentially independently in this core
 - → net angular momentum of entire nucleus determined by quantum state of single odd nucleon
 - * Spin of spin of state, parity based on orbital angular momentum
 - Even (s, d, g, i,....)
 - > Odd (p, f, h,....)
- Configuration Interaction
 - For nuclides with unpaired nucleons number half way between magic numbers nuclei single-particle model is oversimplification
 - \rightarrow Contribution from other nucleons in potential well, limitation of model
- Odd-Odd Nuclei
 - one odd proton and one odd neutron each producing effect on nuclear moments
 - No universal rule can be given to predict resultant ground state
- Level Order
 - applied independently to neutrons and protons
 - proton levels increasingly higher than neutron levels as Z increases
 - \rightarrow Coulomb repulsion effect
 - order given within each shell essentially schematic and may not represent exact order of filling
- Ground States of Nuclei
 - filled shells spherically symmetric and have no spin or orbital angular momentum and no magnetic moment
 - ground states of all even-even nuclei have zero spin and even parity
 → increased binding energy of nucleons

Filling Shells

- lowest level is $1s_{1/2}$,
 - s since $\ell = 0$ $\ell + s = 1/2$
 - level has on (+1=1 m-value)
 - hold only 2 p two neutrons n
 hold only 2 p utron well
- next levels are $1p_{3/2}$ and $2p_{3/2}$ pair
 - N=1 ħω
- ⁴He exact filling of both N= shells for neutrons and prot
 - expected to have an expected stability
- Consider shell filling when N=0 and N=1 $\hbar \, \omega$ shells filled
 - eight protons and eight ne ons
 - \rightarrow ¹⁶O should be especial table
- other shell closures occur at 20, 28, 5 7, and 126 nucleons
 - unusually large numbers of ison s and isotones due to enhanced stability
- A few stable nuclei have both closed neutrand proton shells
 - very strongly bound (relative to their neighbors)
 - \rightarrow ⁴He, ¹⁶O, ⁴⁰Ca, ⁴⁸Ca, and ²⁰⁸Pb
- doubly closed shell nuclei have been synthesized outside stable range
 - ⁵⁶Ni, ¹⁰⁰Sn and ¹³²Sn (unstable)

Filling Example

Filling Example

Filling Levels

J-12

Shell Filling: Spin and parity for odd-odd nuclei

Configurations with both odd proton and odd neutron have coupling rules to determine spin

- Integer spin value
- Determine spin based on Nordheim number N
- Nordheim number N (=j₁+j₂+ l₁+ l₂) is even, then I= j₁-j₂
 if N is odd, I= j₁±j₂
- Parity from sum of l states
 - Even positive parity
 - Odd negative parity
- prediction for configurations in which there is combination of particles and holes is $I=j_1+j_2-1$
- Examples on following page

Shell Model Example

5 - 14

Particle Model: Collective Motion in Nuclei

- **Effects of interactions not included in shell-model** description
 - pairing force
 - lack of spherically symmetric potential
- **Nonspherical Potential**
 - intrinsic state
 - →most stable distribution of nucleons among available single-particle states
 - since energy require for deformation is finite, nuclei oscillate about their equilibrium shapes \rightarrow Deformities 150 < A < 190 and A < 220
 - * vibrational levels
 - nuclei with stable nonspherical shape have distinguishable orientations in space
 - \rightarrow rotational levels
 - →polarization of even-even core by motion of odd nucleon
- Splitting of levels in shell model
 - Shell model for spherical nuclei
- Deformation parameter ε_2

Prolate: polar axis greater than equatorial diameter

Oblate: polar axis shorter than diameter of equatorial circle

$$\epsilon_2 = \delta + \frac{1}{6}\delta^2 + \frac{5}{18}\delta^3 + \frac{37}{216}\delta^4 + \dots$$

Shell change with deformation

- Energy of a single nucleon in a deformed potential as a function of deformation ε .
- diagram pertains to either Z < 20 or N < 20. Each state can accept two nucleons

5-17

Figure 4. Nilsson diagram for protons or neutrons, Z or N \leq 50 ($\varepsilon_A = 0$).

5-18

Questions

- What is a nuclear potential
- What are the concepts behind the shell model
- What can be inferred from deviations in spin and parity from the shell model?
- How do nuclear shapes relate to quadrupole moments

Pop Quiz

- Provide comments on blog
- Respond to PDF Quiz 5

